Colloid interaction energies for physically and chemically heterogeneous porous media.

نویسندگان

  • Scott A Bradford
  • Saeed Torkzaban
چکیده

The mean and variance of the colloid interaction energy (Φ*) as a function of separation distance (h) were calculated on physically and/or chemically heterogeneous solid surfaces at the representative elementary area (REA) scale. Nanoscale roughness was demonstrated to have a significant influence on the colloid interaction energy for different ionic strengths. Increasing the roughness height reduced the magnitude of the energy barrier (Φmax*) and the secondary minimum (Φ2min*). Conversely, increasing the fraction of the solid surface with roughness increased the magnitude of Φmax* and Φ2min*. Our results suggest that primary minimum interactions tend to occur in cases where only a portion of the solid surface was covered with roughness (i.e., isolated roughness pillars), but their depths were shallow as a result of Born repulsion. The secondary minimum was strongest on smooth surfaces. The variance in the interaction energy was also a strong function of roughness parameters and h. In particular, the variance tended to increase with the colloid size, the magnitude of Φ*, the height of the roughness, and especially the size (cross-sectional area) of the heterogeneity. Nonzero values of the variance for Φ2min* implied the presence of a tangential component of the adhesive force and a resisting torque that controls immobilization and release for colloids at this location. Heterogeneity reduced the magnitude of Φ* in comparison to the corresponding homogeneous situation. Physical heterogeneity had a greater influence on mean properties of Φ* than similar amounts of chemical heterogeneity, but the largest reduction occurred on surfaces with both physical and chemical heterogeneity. The variance in Φ* tended to be higher for a chemically heterogeneous solid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colloid adhesive parameters for chemically heterogeneous porous media.

A simple modeling approach was developed to calculate colloid adhesive parameters for chemically heterogeneous porous media. The area of the zone of electrostatic influence between a colloid and solid-water interface (A(z)) was discretized into a number of equally sized grid cells to capture chemical heterogeneity within this region. These cells were divided into fractions having specific zeta ...

متن کامل

A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media.

A two-dimensional model for colloid transport in geochemically and physically heterogeneous porous media is presented. The model considers patchwise geochemical heterogeneity, which is suitable to describe the chemical variability of many surficial aquifers with ferric oxyhydroxide-coated porous matrix, as well as spatial variability of hydraulic conductivity, which results in heterogeneous flo...

متن کامل

Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media

Effective use of colloid transport models for heterogeneous subsurface porous media requires the development of methodologies to identify the key model parameters. The inverse problem of a two-dimensional model for colloid transport in geochemically heterogeneous porous media is systematically investigated in this paper. Sensitivity analysis prior to the parameter identification provided valuab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 29 11  شماره 

صفحات  -

تاریخ انتشار 2013